
N92-22336

Transportable Applications Environment (TAE) Plus
a NASA tool used to develop and manage Graphical User Interfaces

Martha R. Szczur

NASA/Goddard Space Flight Center
Greenbelt, MD 20771 USA

mszczur@postman.gsfc.nasa.gov

ABSTRACT

TAE Plus was built at NASA's Goddard Space Flight Center to

support the building of graphical user interfaces (GUIs) for highly

interactive applications, such as realtime processing systems and
scientific analysis systems. If is a general purpose portable tool that

includes a What You See Is What You Get (WYSIWYG) WorkBench

which allows user interface designers to layout and manipulate

windows and interaction objects. The WorkBench includes both

user entry objects (e.g., radio buttons, menus) and data-driven

objects (eg.,dials, gauges, stripcharts), which dynamically change

based on values of realtime data. This paper discusses what TAE

Plus provides, how the implementation has utilized state-of-the-art

technologies within graphic workstations, and how it has been used
both within and outside NASA.

BACKGROUND

Emergence of graphical user Interfaces

With the recent emergence of sophisticated graphic workstations

and the subsequent demands for highly interactive systems,

designing and developing good user interfaces has become more

complex and difficult. Prior to the graphic workstations, the applica-
tion developer was primarily concerned with developing user inter-

faces for a single monochrome 80x24 alphanumeric character

screen with keyboard user entry. With high resolution bit-mapped

workstations, the user interface designer has Io be cognizant of

multiple window displays, the use of color, graphical objects and

icons, and various user selection techniques (e.g., mouse, trackball,

tablets).

High resolution graphic workstations also provide system devel-

opers with the opportunity to rethink and redesign the user inter-
faces (UI) of their next generation applications. For instance, in a

command and control environment, many processes run simultane-

ously to monitor a particular operation. With modern graphic work-

stations, time critical information concerning multiple events can be

displayed concurrently on the same screen, organized into different

windows in a variety of graphical and textual presentations. As
today's workstations inspire more elaborate user interfaces, the

applications which utilize their graphics capabilities increase in

complexity. Thus, an interactive tool that simplies the process of

building user interfaces becomes an important productivity element

within an application development environment.

Requirements for a prototype-to-operational development
environment

In building a user interface development tool, we wanted to estab-

508

lish an integrated environment that allows easy profofyping of an
application user interfaces, and also, provides for a smooth transi-

tion from the prototyped system into the base operational applica-

tion. This environment would satisfy the following objectives:

separate the user interface from the application,

provide tools to allow interactive design/change/save of user

interface elements,

take advantage of the latest hardware technology,

support rapid prototyping,

manage the user interface,

develop tools for increasing application development produc-

tivity,

provide the application with high level runtime services, and

allow portability to different computing environments.

WHAT DOES TAE PLUS PROVIDE?

To meet the defined goals, services and tools were developed for

creating and managing window-oriented user interfaces. It became

apparent, due to the flexibility and complexity of graphical user inter-

faces, that the design of the user interface should be considered a

separate activity from the application program design. The interface

designer can then incorporate human factors and graphic art tech-

niques into the user interface design. The application programmer

needs only to be concerned about what results are returned by the
user interaction and not the look of the user interface.

In support of the user interlace designer, an interactive WorkBench

application was implemented for manipulating interaction objects

ranging from simple buttons to complex multi-object panels. As

Figure 1. TAE Structure

illustrated in Figure 1, after designing the screen display, the Work-

Bench saves the specification of the user interface in resource files,

which can then be accessed by application programmers through a

set of runtime services, Window Programming Tools (WPTs).

Guided by the information in the resource files, the routines handle
all user interactions. The WPTs utilize standard underlying software

(e.g., MIT X Window System TM , Open Software Foundation's

Motifl-") to communicate with the graphic workstations_ [Ref. 2,3]
As a further aid to the Ut developer, the WorkBench provides an

option to generate the source code which will display and manage

the designed user interface. This gives the programmer a working

template into which application-specific code can be added.

INTERACTION OBJECTS AS BUILDING BLOCKS

The basic building blocks for developing an application's graphical

user interface are a set of interaction objects. All visually distinct

elements of a display that are created and managed using TAE Plus

are considered 1o be interaction objects and they fall into three cate-

gories: user-entry objects, information objects, and data-driven

objects. User-entry objects are mechanisms by which an applica-

tion can acquire information and directives from the end user. They
include radio buttons, check boxes, text entry fields, sliding scaler,

scrolling text lists, pulldown menus and push buttons. Information

objects are used by an application to instruct or hOlily the user,
such as contextual on-line help information displayed in a scrollable

Selection Category:

oo.-i
Sldoct_*n

> wcss Owr

0 v,,wu _cm (_]
d,_r_ s

Text Category:

[Cy_am,c Te_t Value l [Kegtn_j LABEL

Mullt-Ltn_ _lit

_LJY°M_n _ll_Lm the |apu

71Kt Otapt_ (WKt smmmt;re=t)

"/htt k tm tm_n Ira.

n m

_lkle -0

Stretche_t

fill

_lue = 3.2

Rotators

•¢ _) Et
3.,,,,I, ,,,l

M_r_

Dynamic Text Stripchart Discrete

Figure 2. TAE Plus User Interface Interaction Objects

static text object or brief status error messages displayed in a

bother box. Data-driven objects are vector-drawn graphic objects

which are linked to an application data variable; elements of their

view change as the data values change. Examples are dials, ther-

mometers, and strip charts. When creating user dialogues, these

objects are grouped and arranged within panels (i.e., windows) in
the WorkBench.

The use of interaction objects offers the application designer/

programmer a number of benefits with the expected payoff of an

increase in programmer productivity. The interaction objects provide

a consistent look and feel for the application's user interface, which

translates into reduced end-user training time, more attractive

screens, and an application which is easier to use. Another key

benefit is that since the interaction objects have been thoroughly
tested and debugged, the programmer is able to spend more time

testing the application and less time verifying that the user interface

behaves correctly. This is particularly important considering the

complexity of some of the objects, and the programming effort it

would take to code them from scratch. Refer to Figure 2 for a

sample of the TAE Plus interaction objects.

TAE PLUS WORKBENCH

The WorkBench provides an intuitive environment for defining,

testing, and communicating the look and feel of an application

system. Functionally, the WorkBench allows an application

designer to dynamically lay out an application screen, defining its

static and dynamic areas. The tool provides the designer with a

choice of pre-designed interaction objects and allows for tailoring,

combining and rearranging of the objects. To begin the session, the

designer needs to create the base panel (i.e., window) into which

interaction objects will be specified. The designer specifies presen-
tation information, such as the title, font, color, and optional on-line

help for the panel being created. The designer defines both the
presentation information and the context information of all interac-

tion items to reside in the panel by using the item specification

window (refer to Figure 3). As the UI designer moves, resizes, and

alters any of the item's attributes, the changes are dynamically

reflected on the display screen.

The designer also has the option of retrieving palettes of previously

created items. The ability to reuse interaction objects saves
programming time, facilitates experimenting with different combina-

tions of items in the prototyping process, and contributes to stan-

dardization of the application's look and feel. It an application

system manager wanted to ensure consistency and uniformity
across an entire application's UI, all developers could be instructed

to use only items from the application's palette of common items.

When creating a data-driven object, the designer goes through a

similar process by setting the associated attributes (e.g., color

thresholds, maximum, minimum, update delta) in the specification

panels. To create the associated graphics drawing, the WorkBench

provides a drawing tool within which the static background and
dynamic foreground of a data-driven object can be drawn, edited,

and saved. Figure 4 shows the drawing tool being used to create a

stretcher data-driven object.

Most often an application's UI will be made up of a number of

related panels, sequenced in a meaningful fashion. Through the
WorkBench, the designer defines the interface connections. These

links determine what happens when the user selects a button or a

menu entry. The designer attaches eventsto interaction items and

thereby designates what panel appears and/or what program

executes when an event is triggered. Events are triggered by user-

controlled I/O peripherals (e.g., point and click devices or keyboard

input).

509

Figure 3. Building a user interface with the WorLBench

i!_ii_iiiii

!iiiiiiiiiii
ii_iiiiiiiii

:ii_ii!ii?ill
!iiiiiiiiiii

_iiiiiiiiiiil
iiiiiiiiiil;

_n Th_l_old
Ixl Color Thresholds

i

:0,000000 (D_AULT) / J+++++++++++++mn+,.+,_.+--, ^_+_,...-. _,I:::::::::::: [AI

ili!!!iiii[!!'^' i,o.o_o,..,,, !!!iii!iiiiii!ili:

i_iiii!!!i! _,...__ iiiiiiiiiii::

............ d _iiiiiiiiiiiii!ili
ii ! il i ! ii

Figure 4+ Creating a stretcher data-driven ohl'ect

TAE Plus also offers an optional help feature which provides a
consistent mechanism for supplying applicalion-specific information

about a panel and any interaction items within the panel. In a

typical session, the designer elects to edit a help file after all the

panel items have been designed. Clicking on the edit help option in
the Panel Specification Panel brings up a text editor window in

which the appropriate information can be entered. The designer

can then define any builon item or icon item to be the help item for

the panel. During the application operation, when the end-user

clicks on the defined help item, the cursor changes to a question

mark symbol (?). The end-user then clicks on the panel itself or any

item in the panel fo bring up a help panel containing the associated

help text.

Having designed the layout of panels and their attendant items and

having threaded the panel and items according to their interaction

510

scenario, the designer is able to preview (i.e., rehearse) the inter-

face's operation from the WorkBench. With this potential to test

drive an interface, to make changes, and to test again, iterative

design becomes part of the prolotyping process. With the rehearsal

feature, the designer can evaluate and refine both the functionality

and the aesthetics o! a proposed interface. After the rehearsal,

control is returned to wherever the designer left off in the Work-

Bench and the designer can either continue with the design process
or save the defined UI in a resource file.

Developing software with sophisticated user interfaces is a complex

process, mandating the support of varied falents, including human
factors experts and application program specialists. Once the UI

designer (who may have limited experience with actual code devel-

opment) has finished the Ut, he/she can turn the saved UI resource

file over to an experienced programmer. As a further aid to the

application programmer, the WorkBench has a "generate" feature,

which produces a fully annotated and operational body of code

which will display and manage the entire WorkBench-designed UI.

Currently, source code generation of C, Ada, and TCL are

supported, with bindings for C++ expected in a future release of

TAE Plus. The programmer can now add additional code 1o this

template and make a fully functional applicalion. Providing these

code stubs helps in establishing unilorm programming method and

style across large applications or within a family of interrelated soft-

ware applications.

WINDOW PROGRAMMING TOOLS (WPTs)

The Window Programming Tools (WPTs) are a package of applica-

tion program callable subroutines used to control an application's

user interlace. Using these routines, applications can define,
display, receive information from, update and/or delete TAE Plus

panels and interaction objects. WPTs support a modeless user

interface, meaning a user can interact with one of a number of inter-

action objects within any one of a number of displayed panels. In

contrast to sequential mode-oriented programming, modeless

programming accepts, at any instance, a number of user inputs, or

events. Because these multiple events must be handled by the

application program, event-driven programming can be more

complex than traditional programming. The WorkBench's auto-

generation of the WPT event loop reduces the risk of programmer

error within the UI portion of an application's implementation.

As mentioned earlier, the WPT package utilizes the MIT X Window

System as its base windowing system. One of the strengths of X is

the concept of providing a low-level abstraction of windowing

support (Xlib), which becomes the base standard, and a high-level

Wpt AddEvent

Wpt_BeglnWalt

Wpt Closeltems

Wpt_ConvertName

Wpt Endweit

Wpt_lnit

Wpt_ltemWtndow

WpLMisslngVal

Wpt_New Penal

Wpt_NaxtEvent

Wpt PenelErase

Wpt PenelMessage

Wpt PenelReset

Wpt_PanelTopWtndow

Wpt_PenelWldgetld

WpLPeneiWlndow

Wpt_ParmReJect

Wpt_ParmUpdete

Wpt_Pending

Wpt_RemoveEvant

Wpt_SetTImeOut

Wpt VlewUpdate

Add other sources for inputJ'outpuUexcaptlon

Display busy indicator cursor

Close Items on a Panel

Get the X Id of e named window

Stop displaying busy indicator cursor

Initializes Interface to X Window System

Gets the window Id of the window containing s parameter

Indicates If any values are missing

Displays • user interlace panel

Gets next panel-related event

Erases the displayed panel from the screen

Displays message in "Bother Box"

Resets object values to initial values

Gets panel's parent shell window Id

Return the Widget Id of a Wpt Panel Widget

Returns the X Id of • panel

Generates a rejection message for a given value

Updates the displayed values of an object

Check If a WptEvent is pending from X, Psrm or file.

Remove a previously registered event

Sat/Cancel timeout for gathering Wpt events.

Updates the view of a parameter on a displayed panel

Figure 5. The Winck)w Programming "lbols (Wt_73)

abstraction (X toolkits), which has a set of interaction objects (called

"widgets" in the X world) that define elements ot a Ul's look and feel.

The current version of TAE Plus (V5.1) operates with the X11 R4

and uses the OSF/Motif toolkit, widgets and window manager.

The WPTs also provide a buffer between the application program

and the X Window System services. For instance, to display a

WorkBench-designed panel, an application makes a single call to

Wpt_NewPanel (using the panel name specified in the WorkBench).

This single call translates into a function that can make as many as

50 calls to X Window System routines. For the majority of applica-

tions, the WPT services and objects supported by the WorkBench

provide the necessary user interface tools and save the

programmer from having to learn the complexities of programming

directly with X. This can be a significant advantage, especially
when considering the learning curve differential between 26 WPT
routines versus over 400 X Toolkit intrinsics and over 200 Xlib

services. Refer to Figure 5 for a sample list of the WPTs.

IMPLEMENTATION

The TAE Plus architecture is based on a separation of the user

interaction management from the application-specific software. The

current implementation is a result of having gone through several

prototyped and beta versions of a WorkBench and user interface

support services during the 1986-89 period, as well as building on
several data structures from an earlier alphanumeric-oriented UI

management system, TAE Classic

The "Classic" portion of the TAE Plus code (= 60,000 LOC) is imple-
mented in the C programming language. In selecting a language for

the WorkBench and the WPT runtime services, we felt a "true"

object-oriented language would provide us with the optimum
environment for implementing the TAE Plus graphical user interface

capabilities. (See Chapter 9 of Cox [Ref. 4] for a discussion on the

suitability of object-oriented languages for graphical user inter-

faces.) We selected C++ [Ref. 5] as our implementation language

for several reasons [Ref. 6]. For one, C++ is becoming increasingly

popular within the object-oriented programming community.

Another strong argument for using C++ was the availability of

existing, public domain, X-based object class libraries. Utilizing an

existing object library is not only a cost saver, but also serves as a

learning tool, both for object-oriented programming and for C++.
Delivered with the X Window System is the InterViews C++ class

library and a drawing utility, idraw, both of which were developed at

Stanford University. [Ref. 7] The idraw utility is a sophisticated direct

manipulation C++ application, which we integrated into the Work-

Bench to support creating, editing and saving the graphical data-

driven interaction objects.

AVAILABILITY AND USER SUPPORT

After two years of prototyping and developing beta versions of the

TAE Plus, an industrial strength version of TAE Plus (Version 4.1)
was released in February 1990. A year later, in April 1991, the latest

version, TAE Plus V5.1, was released. It is available for public

distribution, at a minimal license fee, from the Center of Software

Management and Information Center (COSMIC), a NASA distribu-

ton center. While TAE Plus base development and testing is done

on a Sun workstation under UNIX within the R&D laboratory at

GSFC, TAE Plus is also ported onto a varieity of UNIX workstations

(e.g., Apollo, Vaxstation II, Decstation 3100, HP9000, and Macin-

tosh II with A/UX.) TAE Plus is also available and validated on the
Vaxstation II under VMS and DECWindows. Other user sites have

successfully installed TAE Plus onto the Masscomp, Silicon

Graphics Iris and other Unix-based graphic workstations. During
the summer of 1991, as Motif 1.1 becomes available on different

platforms, TAE Plus will be ported to a variety of other machines.

511

Since the first release of TAE Classic in 1981, we have provided

user support through a fully staffed TAE Support Office (TSO). This
service has been one of the primary reasons for the success of

TAE. Through the TSO, users receive answers to technical ques-

lions, report problems, and make suggestions for improvements. In

turn, the TSO keeps users up-to-date on new releases, publishes a
newsletter, and sponsors user workshops and conferences. This

exchange of information enables the Project Office 1o keep the TAE
software and documentation up-to-date and, perhaps most impor-

tantly, take advantage of user feedback to help direct future devel-
opment.

APPUCATIONS USING TAE PLUS

Since 1982 over 800 sites have installed TAE Classic and/or TAE

Plus. The applications built or being built with TAE perform a

variety of different functions. TAE Classic usage was primarily used

for building and managing large scientific data analysis and data

base systems (e.g., NASA's Land Analysis System (LAS), Atmos-
pheric and Oceanographic Information Processing System (AOIPS),

and JPL's Multimission Image Processing Laboratory (MIPL)
system.) Within the NASA community, TAE Plus is also used for

scientific analysis applications, but the heaviest concentration of

user applications has shifted to support of realtime control and

processing applications. This includes supporting satellite data

capture and processing, monitor and control of spacecraft and

science instruments, prototyping user interlace of the Space Station

Freedom crew workstations and supporting diagnostic display

windows lot reaitime control systems in ground operations. For

these types of applications, TAE Plus is principally used to design

and manage the user interlace, which is made up of a combination

of user entry and data-driven interaction objects. TAE Plus

becomes a part of the development life cycle as projects use TAE

Plus to prototype the initial user interlace design and have this

designed user interlace evolve into the operational UI.

Outside the NASA community, TAE Plus is being used by an assort-

ment of other government agencies (22%), universities (t5%), and

private industries (35%). Within the government sector, users range
from the National Center for Atmospheric Research, National

Oceanographic and Atmospheric Adminstration, U.S. Geological

and EROS Data Center, who are developing scientific analysis,

image mapping and data distribution systems, to numerous Depart-

ment of Defense laboratories, who are building command-and-

control-related systems. Universities represented among the TAE

community include CalTech, Cornell, Georgia Tech, MIT, Stanford,
University of Maryland and University of Colorado. Applications

being developed by University of Colorado include the Operations

and Science Instrument Support System (OASIS), which monitors

and controls spacecraft and science instruments and a robotics

testbed for research into the problems of construction and assembly
in space. [Ref. 8] Private industry has been a large consumer of

the TAE technology and a sample of the companies that have

received TAE Plus include Apple Computer Inc., Ford Aerospace,

Martin Marietta, Computer Sciences Corp., TRW, Lockheed, IBM,

Northern Telecom, Mitre Corp., General Dynamics and GTE

Government Systems. These companies are using TAE Plus for an

assortment of applications, ranging from a front-end for a corporate
database to advanced network control center. Northern Telecom,

Inc. used TAE Plus to develop a technical assistance service appli-

cation which enables users to easily access a variety of applications

residing on a network of heterogeneous host computers. [Ref. 9]

Because of the high cost associated with programming and soft-

ware-development, more and more software development groups

are looking for easy-to-use productivity tools, and TAE Plus is

becoming recognized as a viable tool for developing an application's
user interface.

NEXT STEPS

The current TAE Plus provides a useful tool within the user interface

development environment -- from the initial design phases of a

highly interactive prototype to the fully operational application

package. However, there are many enhancements and new capa-
bilities that will be added to TAE Plus in future releases.

In the near term, the emphasis will be on enhancement features and

upgrades, such as adding the full set of Motif objects and C++ code

generation. All the requested enhancements are user-driven, based

on actual experience using TAE Plus, or requirement-driven based

on an application's design. For example, on the enhancements list
are extensions to the connections mechanism, support for importing

foreign graphics, and automating the creation and integration of new

interaction objects into the WorkBench.

Future advancements include expanding the scope of the Trans-

portable Applications Environment (TAE) to include new tools or

technologies. For instance, the introduction of hypermedia tech-
nology, 3-D support and the integration of expert system technology

to aid in making user interface design decisions are targeted for

investigation and prototyping.

CONCLUSION

With the emergence of sophisticated graphic workstations and the

subsequent demands for highly interactive systems, the user inter-

face becomes more complex and includes multiple window displays,

the use of color, graphical objects and icons, and various selection

techniques. Protolyping of different user interface designs, thus,

becomes an increasingly important method for stabilizing concepts

and requirements for an application. At GSFC, the TAE Plus devel-
opment team had the requirement to provide a tool for prototyping a

visual representation of a user interface, as well as to establish an

integrated development environment that allows prototyped user

interfaces to evolve into operational applications. TAE Plus is

fulfilling this role by providing a usable, generalized, portable and

maintainable package of development tools.

TAE Plus is an evolving system, and its development will continue

to be guided by user-defined requirements. To date, each phase of
TAE Plus's evolution has taken into account advances in virtual

operating systems, human factors research, command language

design, standardization efforts and software portability. With TAE

Plus's llexibility and functionality, it can contribute both more
advances and more standardization in user interface development

system technology.

ACKNOWLEDGEMENTS

TAE Plus is a NASA software product being developed by the

NASA/Goddard Space Flight Center with contract support by
Century Computing, Inc. The work is sponsored by the NASA

Office of Space Operations.

TAE is a registered trademark of National Aeronautics and Space

Administration (NASA). It is distributed through NASA's distribution

center, COSMIC, (404) 542-3265. For further information, contact

COSMIC and/or the TAE Support Office at GSFC, (301) 286-6034.

REFERENCES

Perkins, D.C., Howell, D.R., Szczur, MR., "The Transportable

Applications Executive -- an interactive design-to- production

development system," Digital Image Processing In Remote

Sensing, edited by J-P Muller, Taylor & Francis Publishers,

London, 1988.

Scheifler, Robert W., Gettys, Jim., "The X Window System,"

MIT Laboratory for Computer Science, Cambridge, MA,
October 1986.

512

3.

4,

5.

6.

7.

8,

9.

Open Software Foundation, Inc., OSF/Motif TM Programmer's

Reference Manual, Revision 1.1, 1990

Cox, Brad J., Object Oriented Programming, An Evolutionary

Approach, Addison-Wesley Publishing Company, Reading, MA,

1986.

Stroustrup, Bjarne, The C++ Programming Language, Addison-

Wesley Publishing Company, Reading, MA, 1987.

Szczur, Martha R., Miller, Philip, "Transportable Applications

Environment (I"AE) Plus: Experiences in 'Object'ively Modern-

izing a User Intedace Environment," Proceedings of the

OOPSLA Conference, September 1988.

Linton, Mark A., Vlissides, John M., Calder, Paul R.,

"Composing User Inferfaces with Interviews," IEEE Computer,

February, 1989.

Klemp, Marjorie, "TAE Plus in a Command and Control Environ-

ment", Proceedings of theTAE Eighth Users' Conference, June,
1990

Sharma, Alok, ef al., "The TAS Workcenter: An Applicalion

Created with TAE", Proceedings o! the TAE Eighth Users'

Conference, June, 1990

513

